RogerMatematiks
sábado, 16 de junio de 2012
Matemáticas 3er. Grado.
BLOQUE 2
Eje temático: Sentido numérico y pensamiento algebraico
Patrones y ecuaciones
-Uso de ecuaciones cuadráticas para modelar situaciones y resolverlas usando la factorización http://www.slideshare.net/Rockerleo/ecuaciones-de-segundo-grado-13261518
Eje temático: Forma, espacio y medida.
Figuras y cuerpos
-Análisis de las propiedades de la rotación y de la traslación de figuras. http://www.slideshare.net/Rockerleo/propiedades-de-la-traslacin-y-rotacin-de-figuras
-Construcción de diseños que combinan la simetría axial y central, la rotación y la traslación de figuras. http://www.slideshare.net/Rockerleo/yeyo
Medida
-Explicitación y uso del teorema de Pitágoras
Eje temático: Manejo de la información
Nociones de probabilidad
-Cálculo de la probabilidad de ocurrencia de dos eventos mutuamente excluyentes y de eventos complementarios. ( Regla de la suma) http://www.slideshare.net/Rockerleo/regla-de-la-suma
BLOQUE 3
Eje temático: Sentido numérico y pensamiento algebraico
Patrones y ecuaciones
-Resolución de problemas que implican el uso de ecuaciones cuadráticas. Aplicación de la formula general para dichas ecuaciones. http://www.slideshare.net/Rockerleo/formula-general-13351918
Eje temático: Forma, espacio y medida.
Figuras y cuerpos
-Aplicación de los criterios de congruencia y semejanza de triángulos en la resolución de problemas. http://www.slideshare.net/Rockerleo/yeyo2
-Resolución de problemas geométricos mediante el teorema de tales http://www.slideshare.net/Rockerleo/tales-13351956
-Aplicación de la semejanza en la construcción de figuras homoteticas http://www.slideshare.net/Rockerleo/aplicacin-de-la-semejanza
Eje temático: Manejo de la información.
Proporcionalidad y funciones
-Lectura y construcción de gráficas de funciones cuadráticas para modelar diversas situaciones o fenómenos. http://www.slideshare.net/Rockerleo/graficas-de-funciones-cuadraticas
Nociones de probabilidad
-Calculo de la probabilidad de ocurrencia de dos eventos independientes (regla del producto) http://www.slideshare.net/Rockerleo/regla-de-la-multiplicacin
BLOQUE 2
Eje temático: Sentido numérico y pensamiento algebraico
Patrones y ecuaciones
-Uso de ecuaciones cuadráticas para modelar situaciones y resolverlas usando la factorización http://www.slideshare.net/Rockerleo/ecuaciones-de-segundo-grado-13261518
Eje temático: Forma, espacio y medida.
Figuras y cuerpos
-Análisis de las propiedades de la rotación y de la traslación de figuras. http://www.slideshare.net/Rockerleo/propiedades-de-la-traslacin-y-rotacin-de-figuras
-Construcción de diseños que combinan la simetría axial y central, la rotación y la traslación de figuras. http://www.slideshare.net/Rockerleo/yeyo
Medida
-Explicitación y uso del teorema de Pitágoras
Eje temático: Manejo de la información
Nociones de probabilidad
-Cálculo de la probabilidad de ocurrencia de dos eventos mutuamente excluyentes y de eventos complementarios. ( Regla de la suma) http://www.slideshare.net/Rockerleo/regla-de-la-suma
BLOQUE 3
Eje temático: Sentido numérico y pensamiento algebraico
Patrones y ecuaciones
-Resolución de problemas que implican el uso de ecuaciones cuadráticas. Aplicación de la formula general para dichas ecuaciones. http://www.slideshare.net/Rockerleo/formula-general-13351918
Eje temático: Forma, espacio y medida.
Figuras y cuerpos
-Aplicación de los criterios de congruencia y semejanza de triángulos en la resolución de problemas. http://www.slideshare.net/Rockerleo/yeyo2
-Resolución de problemas geométricos mediante el teorema de tales http://www.slideshare.net/Rockerleo/tales-13351956
-Aplicación de la semejanza en la construcción de figuras homoteticas http://www.slideshare.net/Rockerleo/aplicacin-de-la-semejanza
Eje temático: Manejo de la información.
Proporcionalidad y funciones
-Lectura y construcción de gráficas de funciones cuadráticas para modelar diversas situaciones o fenómenos. http://www.slideshare.net/Rockerleo/graficas-de-funciones-cuadraticas
Nociones de probabilidad
-Calculo de la probabilidad de ocurrencia de dos eventos independientes (regla del producto) http://www.slideshare.net/Rockerleo/regla-de-la-multiplicacin
lunes, 4 de julio de 2011
Puntos y rectas notables de un triangulo.
En los triángulos hay una serie de rectas y puntos importantes. Las rectas son la mediana, la mediatriz, la altura y la bisectriz. Los puntos donde se cortan son el baricentro, el circuncentro, el ortocentro y el incentro, respectivamente.
Alturas
Las alturas de un triángulo son las rectas perpendiculares que van desde un vértice al lado opuesto o a su prolongación.
Las tres alturas de un triángulo se cortan en un punto que se llama ortocentro .
El ortocentro puede estar situado en el interior del triángulo, en el caso de los triángulos acutángulos; en uno de sus vértices, en los triángulos rectángulos; o en el exterior, en los triángulos obtusángulos.
Medianas
Las medianas de un triángulo son las rectas que se obtienen al unir cada uno de los vértices del triángulo con el punto medio del lado opuesto a él.
Las tres medianas de un triángulo se cortan en un punto que se llama baricentro .
Mediatrices
Las mediatrices de un triángulo son las rectas perpendiculares a sus lados que pasan por el punto medio.
Se cortan en un punto que está a la misma distancia de los tres vértices del triángulo. Ese punto se denomina circuncentro.
Bisectrices
Las bisectrices de un triángulo son las rectas que dividen a sus ángulos en dos partes iguales.
Las bisectrices de un triángulo se cortan en un punto llamado incentro.
Con centro en el incentro, y radio la distancia de este punto a cualquiera de los lados del triángulo, se puede trazar una circunferencia tangente a los tres lados del triángulo: es la circunferencia inscrita.
Contesta correctamente:
El baricentro es la intersección de las ......
¡A) Altura
¡B) Medianas
¡C)Mediatrices
¡D) Bisectrices
La mediana es la recta que .....
¡A) Une el punto medio de un lado con el vértice opuesto.
¡B) Une el vértice y es perpendicular al lado opuesto.
¡C) Une el vértice con el lado opuesto
- D) Es perpendicular a un lado por el punto medio
Se cumple que:
¡A) El incentro de un triángulo siempre es interior al mismo.
¡B) El baricentro de un triángulo puede ser exterior al mismo.
¡C) El ortocentro de un triángulo siempre es interior al mismo
¡D) El incentro de un triángulo puede ser exterior al mismo
El ortocentro es la intersección de las ......
¡A) Altura
¡B) Medianas
¡C)Mediatrices
¡D) Bisectrices
Traza en el siguiente triangulo sus bisectrices y señala el punto donde se intersecan, dando el nombre tambien de dicha intersección.
Traza en el siguiente triangulo sus mediatrices y señala el punto donde se intersecan, dando el nombre tambien de dicha intersección, además traza su respectiva circunferencia.
jueves, 30 de junio de 2011
Significado y uso de las operaciones. 3er. Grado. Secundaria.
Potenciación.
La potenciación es una expresión matemática que incluye dos términos denominados: base a y exponente n.
Se escribe . Su definición varía según el conjunto numérico al que pertenezca el exponente:
Cuando el exponente es un número natural, equivale a multiplicar un número por sí mismo varias veces: el exponente determina la cantidad de veces.
Por ejemplo:
Exponente negativo.
Cuando el exponente es un número entero negativo, equivale a la fracción inversa de la base pero con exponente positivo.
Potencia de exponente 0
Potencia de exponente 1
Toda potencia de exponente 1 es igual a la base.Multiplicación de potencias de igual base
El producto de dos o más potencias de igual base es igual a la base elevada a la suma de los correspondientes exponentes (se escribe la misma base y se suman los exponentes):
Ejercitación.
¢1)- Escribí como potenciaa-
¢4x4x4x4x4 = ____________
¢ 6x6 = ___________
¢ 5x5x5 = ___________
¢ 3x3x3x3x3 = _____________ e-
¢10x10x10x10x10x10 = __________
Escribe el valor de cada potencia:
¢3 3 = 3 x 3 x 3 = 9 10 3 =
¢7 2 = 5 2 =
¢8 4 = 6 4 =
¢10 5 = 3 2 =
¢2 6 = 10 1=
Resuelve:
El escrito matemático más antiguo que ha llegado a nuestros días es el papiro Rhind. Lohizo un escriba egipcio hace 3600 años y contiene una colección de problemas, este esuno de ellos:
Los gatos egipcios
Hay 7 casas, en cada casa hay 7 gatos. Cada gato mata 7 ratones. Cada ratón se habríacomido 7 espigas de trigo. Cada espiga de trigo produciría 7 arrobas de grano.¿Cuántas arrobas de grano se salvaron de ser comidas por los ratones?
Suscribirse a:
Entradas (Atom)